
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Code and Personality
How to tell your personality type from your code.

Kevin Marks <kmarks@apple.com>
Maf Vosburgh <maf@goat.demon.co.uk>

People with different personalities write the same code different ways. Unfortunately, not all
these ways actually work, but people can learn to change…

You can spot Optimistic programmers
by their novel approach to error checking.
For instance, here’s an Optimistic function
to return a memory buffer filled with 0xFF.

char * GetTheBuffer(
unsigned long bufferSize)

{
char *p = NewPtr(bufferSize);
unsigned long x;

for (x = 0  ; x < bufferSize ; x++)
p[x] = 0xFF;

return p;
}

Listing 1: Optimists get to see a lot of
Macsbug.

Guess what happens if NewPtr fails?
Yes, it returns NULL and you then
overwrite say the low ten megs of memory,
depending on the value of bufferSize. Cool.

Petulant
You can’t stay an Optimist once you’ve

watched your code crash horribly a few
dozen times. For many, the next step is to
become Petulant.

char * GetTheBuffer(
unsigned long bufferSize)

{
char *p = NewPtr(bufferSize);
unsigned long x;

if (p == NULL)
DebugStr(

"\p Error- cannot allocate buffer!");

for (x = 0  ; x < bufferSize ; x++)
p[x] = 0xFF;

return p;
}

Introduction
There are various types of program-

mers around. We’ve certainly worked with
a wide selection. Over the years, we’ve
come to realize that programmers can be
divided into various “personality types”.
You don’t stay the same personality-type
your whole life though — as you develop
and learn, your approach to programming
changes and that change is visible in your
code. We’re going to look at various func-
tions and how programmers with different
personalities would write them.

MacHack attendees have normally
been around the block a few times. That
means they have learnt various things, like
when you’re going around the block, it
helps to watch where you’re going, and be
driving a tank.  We know that a function
has important responsibilities. It needs to
check every error code, keep track of every
byte it allocates, and that function needs to
know how to cope with anything that
happens, cleaning up perfectly after itself
and returning an error code which explains
what went wrong. But in order to write
code like this you have to have made mis-
takes and learned from them. We know we
have.

Optimistic
Everyone starts out by being Optimis-

tic.  Optimistic programmers assume that
system calls will always succeed, there is
always enough memory and disc space,
and there really is a Santa Claus.



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Listing 2. Petulant programmer going critical..

As you can see, Petulant programmers
detect that something has gone wrong,
complain about it in a primitive way, and
then they crash your machine anyway. Not
very useful. Any error you detect, you
should cope with.

Stoic
The next stage in evolution is to handle

any errors that occur, but keep quiet about
them. This is the sort of  “stiff upper lip”
approach that built the British Empire (and
made sure it didn’t last). As Pink Floyd said
on Dark Side of the Moon, “Hanging on in
quiet desperation is the English way”. Let’s
call this personality Stoic.

char * GetTheBuffer(
unsigned long bufferSize)

{
char *p = NewPtr(bufferSize);
unsigned long x;

if(p != NULL)
{
for (x = 0  ; x < bufferSize ; x++)

p[x] = 0xFF;
}

return p;
}

Listing 3. Stoics suffer in silence.

This approach is pretty good - if the
allocation fails the routine does not trash
memory, and it returns NULL, which is a
pretty standard thing to do when an alloca-
tion fails. The trouble with this style, is that
you are not telling the caller why you
failed. Some functions can fail for any
number of different reasons, and it helps to
pass that information on. Furthermore, you
are assuming that the caller realizes that
your function will sometimes return NULL.
If the person calling your function is an
Optimist, you’re back at square one, as they
will happily take that NULL buffer and
start using it.

Realists
Of course grown-up programmers (the

sort who come to MacHack) are Realists.
They know that problems are inevitable,
and when things go wrong, you need to tell
the caller about that. Also, if your function
returns OSErr, just by looking at the proto-
type they can see that errors may happen,
and know that they need to plan for that.

OSErr GetTheBuffer(
unsigned long bufferSize, char *returned)

{
OSErr result = noErr;
char*p =  NewPtr(bufferSize);
unsigned long x;

if (p == NULL)
result = memFullErr;

else
{
for (x = 0  ; x < bufferSize ; x++)

p[x] = 0xFF;
}

*returned = p;
return result;

}
Listing 4. Realists do the right thing.

You could just stop here - at this point
the code is doing the right thing, or telling
the caller why it couldn’t. It isn’t leaking or
trashing memory.

Considerate
However you may want to help others

see the errors of their ways (in the debug
build at least), and become a Considerate
programmer.

OSErr GetTheBuffer(
unsigned long bufferSize,
char *returned)

{
OSErr result = noErr;
char*p =  NULL;
unsigned long x;

if (bufferSize == 0)
{
DebugText("GetTheBuffer:

a zero-size buffer is no use");
result = paramErr;
}

else



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

{
p = NewPtr(bufferSize);
if (p == NULL)

{
DebugText(

"GetTheBuffer: couldn't get the buffer");
result = memFullErr;
}

else
{
for (x = 0  ; x < bufferSize ; x++)

p[x] = 0xFF;
}

}
*returned = p;
return result;

}
Listing 5. Considerate programmers keep you

informed.

DebugText is defined something like
this:

#ifdef DEBUG
#define DebugText(x) debugstr(x)
#else
#define DebugText(x)
#endif

DEBUG is the preprocessor global you
use to distinguish between the debugging
and final builds of your app. You could
define DebugText to log to a file, or put up
an alert - the point is to have a way of
signaling to other programmers (or your-
self) that something odd is going on in your
routine, but to protect the end user from it
by coping nicely.

The programmer here not only returns
sensible error values, but in the debug build
he also stops the program when passed a
buffer that is too big - handy for debugging
the calling code too. However, by not using
an assert, he doesn’t inflict this on the end-
user. That would be not just Petulant, but
Sociopathic as well.

Extravagant
A common personality type that you

come across is the Extravagant program-
mer.  Extravagant programmers back out
when an error happens, but they don’t
bother disposing of the stuff they allocated
along the way. That causes programs that

work fine until an error occurs, causing a
leak, which takes up memory and causes
another error, and so on until the program
eventually fails catastrophically.

The trend to use C++ exceptions con-
tributes to this problem, since they make it
so easy to just jump up several levels of
execution, happily leaking all sorts of
things

ResizeGrayScalePicHandle is a C ex-
ample of a function that needs to allocate a
bunch of things and do some real work.
Some little things we need to define be-
fore the example:

const short k8BitGrayScaleID = 32 + 8;

void QDNormal(void)
{

ForeColor(blackColor);
BackColor(whiteColor);
PenNormal();

}

// make the left and top coords 0
void ZeroRect(Rect *r)
{

OffsetRect(r, -r->left, -r->top);
}

// zero the position and scale
void ScaleRect(Rect *r, double scale)
{

ZeroRect(r);
r->right = ((double)r->right) * scale;
r->bottom = ((double)r->bottom) * scale;

}

OSErr ResizeGrayScalePicHandle(
PicHandle inPic, PicHandle *outPic,
double scale)

{
Rect inRect = inPic [0]-> picFrame1;
Rect outRect = inRect;
GWorldPtr inWorld, outWorld;
GDHandlesaveGD;
CGrafPtrsavePort;
CTabHandle grayTab =

GetCTable(k8BitGrayScaleID);

1 The sequence [0]-> is called “sprong”, and is a conven-
ient way to use a typed Handle to a struct. We could have
used  “inRect = (**inPic).picFrame” with the same result.
Sprong is particularly useful when dealing with
chains of typed Handles to structs, as in this
example:
short depth = GetMainDevice() [0]-> gdPMap [0]->
pixelSize;



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

if (grayTab == NULL)
return memFullErr;

ZeroRect(&inRect);
ScaleRect(&outRect, scale);
result = NewGWorld(&inWorld, 8, &inRect,

grayTab, NULL, 0);
if (result != noErr)

return result;

GetGWorld(&savePort, &saveGD);
SetGWorld(inWorld, NULL);

result = NewGWorld(&outWorld, 8,
&outRect, grayTab, NULL, 0);

if (result != noErr)
return result;

LockPixels(GetGWorldPixMap(inWorld));
LockPixels(GetGWorldPixMap(outWorld));
EraseRect(&inRect);
DrawPicture(inPic, &inRect);

SetGWorld(outWorld, NULL);
CopyBits( (BitMap*) *inWorld->portPixMap,

(BitMap*) *outWorld->portPixMap,
&inRect, &outRect, ditherCopy, NULL );

*outPic = OpenPicture(&outRect);
CopyBits( &qd.thePort->portBits,

&qd.thePort->portBits, &outRect,
&outRect,srcCopy, NULL);

ClosePicture();

DisposeGWorld(inWorld);
DisposeGWorld(outWorld);
DisposeCTable(grayTab);
SetGWorld(savePort, saveGD);
return result;

}
Listing 6. Extravagant programmer wants

your heap.

You can see that there is an attempt at
error handling, but if the program fails it
leaves things in a sorry state. If a failure
occurs it can leak a GWorld, a color table,
and can also leave the QuickDraw port set
to one of the leaked offscreen GWorlds.

This kind of real-world function shows
how complicated real error handling can
be, but luckily there is a simple style that
can cope with this sort of problem. Just
keep all the cleaning up code at the end of
the function, as above, and write it in such a
way that it always safe to execute, and just
jump to that block if an error occurs.

OSErr ResizeGrayScalePicHandle(
PicHandle inPic, PicHandle *outPic,
double  scale)

{
Rect inRect = inPic [0]-> picFrame;
Rect outRect = inRect;
GWorldPtr inWorld = NULL,

outWorld = NULL;
GDHandlesaveGD;
CGrafPtrsavePort;
CTabHandle grayTab =

GetCTable(k8BitGrayScaleID);

GetGWorld(&savePort, &saveGD);

if (grayTab == NULL)
{
result = memFullErr;
goto bail;
}

ZeroRect(&inRect);
ScaleRect(&outRect, scale);

result = NewGWorld(&inWorld, 8, &inRect,
grayTab, NULL, 0);

if (result != noErr)
goto bail;

result = NewGWorld(&outWorld, 8,
&outRect, grayTab, NULL, 0);

if (result != noErr)
goto bail;

SetGWorld(inWorld, NULL);
LockPixels(GetGWorldPixMap(inWorld));
LockPixels(GetGWorldPixMap(outWorld));
QDNormal();
EraseRect(&inRect);
DrawPicture(inPic, &inRect);
SetGWorld(outWorld, NULL);
QDNormal();
CopyBits( (BitMap*)*inWorld->portPixMap,

(BitMap*) *outWorld->portPixMap,
&inRect, &outRect, ditherCopy, NULL );

DisposeGWorld(inWorld);
inWorld = NULL;

*outPic = OpenPicture(&outRect);
CopyBits( &qd.thePort->portBits,

&qd.thePort->portBits,
&outRect, &outRect,srcCopy, NULL);

ClosePicture();

bail:
if (inWorld)

DisposeGWorld(inWorld);
if (outWorld)

DisposeGWorld(outWorld);
if (grayTab)

DisposeCTable(grayTab);



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

SetGWorld(savePort, saveGD);
return result;

}
Listing 7. Cleans up properly on error now, but

a little verbose.

Notice how everything is always dis-
posed, there is no duplication of cleanup
code, and all errors are checked and re-
turned. Initialising all storage to NULL,
means that the cleanup code can easily see
what needs to be disposed. See how when
we dispose inWorld in the middle of the
function, we set it to NULL, so the cleanup
code knows not to dispose it again.

Of course some people say that goto is
evil, and just typing those four letters is
enough to condemn you to Silicon Hell.  We
disagree - this particular use of goto is an
elegant solution to a particularly nasty
problem. It removes the need to need to
duplicate the cleanup code or get into a
confusing case of nesting.

This style gets more compact with the
use of the BailOSErr macro, first seen by us
in QuickTime sample code.

#define BailOSErr(a) {result = (a) ;
if (result != noErr) goto bail;}2

By using the BailOSErr macro a block
like this:

result = NewGWorld(&inWorld, 8, &inRect,
grayTab, NULL, 0);

if (result != noErr)
goto bail;

or this:

if (result = NewGWorld(&inWorld, 8,
&inRect, grayTab, NULL, 0))

goto bail;

turns into this line :

BailOSErr( NewGWorld(&inWorld, 8, &inRect,
grayTab, NULL, 0) );

It is also helpful to write dispose func-
tions for commonly disposed toolbox
objects like the two below. These ignore
NULL values, and write NULL back to the
disposed variable, preventing a double
dispose.

void DisposeIfGWorld(GWorldPtr *gw)
{

if ( (gw != NULL) && (*gw != NULL))
{
DisposeGWorld(*gw);
*gw = NULL;
}

}

void DisposeIfCTable(CTabHandle *ct)
{

if ( (ct != NULL) && (*ct != NULL))
{
DisposeCTable(*ct);
*ct = NULL;
}

}
Listing 8. Wrapper functions for disposing

Toolbox objects.

Here is a version using the new stuff:

OSErr ResizeGrayScalePicHandle(
PicHandle inPic, PicHandle *outPic,
double scale)

{
Rect inRect = inPic[0]->picFrame,

outRect = inRect;
GWorldPtr inWorld = NULL,

outWorld = NULL;
GDHandlesaveGD;
CGrafPtrsavePort;
CTabHandle grayTab =

GetCTable(k8BitGrayScaleID);

GetGWorld(&savePort, &saveGD);

if (grayTab == NULL)
BailOSErr(memFullErr);

2 Actually, this macro would be better written wrapped
with “do/while”, like this
#define BailOSErr(a) do {result = (a) ; if (result !=
noErr) goto bail;} while(0)
because then you can write “if (x) BailOSErr(foo());
else BailOSErr(bar());” without getting an error
message from the C compiler.



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

ZeroRect(&inRect);
ScaleRect(&outRect, scale);
BailOSErr( NewGWorld(&inWorld, 8,

&inRect, grayTab, NULL, 0));
BailOSErr( NewGWorld(&outWorld, 8,

&outRect, grayTab, NULL, 0));
SetGWorld(inWorld, NULL);
LockPixels(GetGWorldPixMap(inWorld));
LockPixels(GetGWorldPixMap(outWorld));

EraseRect(&inRect);
DrawPicture(inPic, &inRect);

SetGWorld(outWorld, NULL);
CopyBits( (BitMap*)*inWorld->portPixMap,

(BitMap*) *outWorld->portPixMap,
&inRect, &outRect, ditherCopy, NULL );

DisposeIfGWorld(&inWorld);

*outPic = OpenPicture(&outRect);
CopyBits( &qd.thePort->portBits,

&qd.thePort->portBits, &outRect,
&outRect,srcCopy, NULL);

ClosePicture();

bail:
DisposeIfGWorld(&inWorld);
DisposeIfGWorld(&outWorld);
DisposeIfCTable(&grayTab);

SetGWorld(savePort, saveGD);
return result;

}
Listing 9. Macros & dispose wrappers, make

Realism compact.

The step beyond Realism is to add a
dose of Cynicism. We like to tag all our data
structures, so we can recognise them when
they are passed in again. The overhead is
low, and it makes your modules almost
bullet-proof.

We write in a component orientated
style, based on the way the Mac Toolbox
behaves. Programs we’ve written, like “3D
Atlas”, use all sorts of objects. For instance
we’ve written our own picture buttons,
which draw in various sophisticated ways.
To create one of these you call NewButton
which gives you a ButtonHandle. To draw
it you pass that ButtonHandle to
DrawButton, to dispose it you call
DisposeButton, etc.

Structures like ButtonHandles have a
tag at the front. This is an OSType - in the

case of a ButtonHandle it is initialised to the
value ‘Bttn’ when a ButtonHandle is cre-
ated.

// some fields removed for clarity
typedef struct

{
OSType tag; // here is the tag
Rect buttonRect;
short baseID;
}ButtonRec, *ButtonPtr, **ButtonHandle;

Listing 10. Tag it, so you’ll recognise it again.

Cynical
These tags are fabulously useful things,

if like us you have gone beyond being
Realists and have become really quite Cyni-
cal. All externally visible functions in
Button.c verify the ButtonHandle argument
they were passed is not NULL, is not a
purged handle, and that it has the correct
tag. This is done with a macro called
“Check” that is defined at the top of
Buttons.c.

static OSType kTag  = 'Bttn';
static char kTypeName[] = "ButtonHandle";

#define Check(b) CheckObject((Handle)b,
kTag, kTypeName)

CheckObject is a function that is used throughout the program:

OSErr CheckObject(Handle h, OSType tag,
char *expectedType)

{
OSErr result = noErr;

if (h == nil)
result = nilHandleErr;

else if (*h == nil)
result = nilHandleErr;

else if (*(long*)*h != tag)
result = paramErr;

#ifdef DEBUG
if (result)

{
charstr[256];



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

sprintf(str,
"CheckObject failure type %hd on %s",
result, expectedType);

DebugText(str);
}

#endif

return result;
}

Listing 11. CheckObject

Here’s a simple example which uses
the Check macro.

OSErr ShowButton(ButtonHandle button)
{

OSErr result  = Check(button);

if (result == noErr)
{
button [0]-> visible = true;
result = DrawButton(button);
}

return result;
}
Listing 12. It’s easy to check that Handles are

the right type.

If you call ShowButton and instead of
passing it a ButtonHandle you pass it
NULL, a purged Handle, or a PicHandle
containing a picture of your grandmother,
that error will be detected immediately.
We’ve found that this is mainly useful for
catching coding errors while still in the
development phase, and that the most
common error is to try and act on a NULL
object.

The tag also enables you to recognise
ButtonHandles when browsing through the
heap with a tool like ZoneRanger.
Lastly, the DisposeButton routine sets the
tag to 0, so it is not possible to dispose a
valid ButtonHandle twice.

void DisposeButton(ButtonHandle theButton)
{

if (Check(theButton) == noErr)
{
theButton [0]-> tag = 0;
// dispose any storage owned by the object here
DisposeHandle((Handle)theButton);
}

}
Listing 13. Clear the tag before you dispose.

For the cost of some little 4-byte tag,
your program’s internal routines can gain a
lot more ruggedness.

Those Damn Optimists Again
The Mac Resource Manager is a bit of a

mine-field for the Optimist.
For instance, what’s wrong with this

code that uses purgeable ‘PICT’ resources?

OSErr DrawTwoPictures(short id1, short id2)
{

Rectr = {0,0,100,100};
Handlepic1 = GetResource('PICT', id1);
Handle  pic2 = GetResource('PICT', id2);

DrawPicture(&r, (PicHandle)pic1);
DrawPicture(&r, (PicHandle)pic2);

return noErr;
}

Listing 14. Might work, might not,

The previous function assumes a lot of
things. It assumes that the resources both
exist, can fit in memory together, have not
been purged already, and don’t get purged
in the course of the function. When one of
those assumptions fails, you will be in
trouble.

Purgeable resources are a very power-
ful tool, giving your app a free caching
scheme, but a lot of people forget that
GetResource can give you back a purged
Handle, or that loading one resource can
push out another.

To challenge some of these assump-
tions it helps to have a function like this to
call. If CheckResource says the resource
Handle is OK, and you then make it non-
purgeable, you can count on using it in
your code.



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

// verify a resource handle, reloading it if needed
OSErr CheckResource(Handle h)
{

if (h == NULL)
return resNotFound;

if (*h == NULL)
{
LoadResource(h);
if (*h == NULL)

return memFullErr;
}

return noErr;
}

Listing 15. CheckResource is your friend.

Realism In Action
Given the CheckResource function, it is

possible to write a more Realist version of
this function with blocks like this:

pic1 = GetResource('PICT', id1);
if (result = CheckResource(pic1))

{
pic1 = NULL;
goto bail;
}

pic1State = GetHState(pic1);
HNoPurge(pic1);

Listing 16. Real programmers save and restore
state.

You restore the Handle’s (probably
purgeable) state at the end with HSetState.

This code can be made a lot less cum-
bersome the use of a simple function called
SafeGetResource. This function gets the
valid resource data, saving the Handle’s
state (locked, purgeable, etc), and makes it
non-purgeable. To clean up at the end, just
use HSetState to return the Handle to its
initial state (ie purgeable).

OSErr SafeGetResource( Handle *retHandle,
char *retState, ResType theType,
short theID)

{
Handleh = GetResource(theType, theID);
OSErr result = noErr;

if (result = CheckResource(h))
{
*retHandle = 0;
// only complain on the debug build

DebugText("SafeGetResource failed");
}

else
{
*retState = HGetState(h);
*retHandle = h;

HNoPurge(h);
}

return result;
}

Listing 17. Making your resource code
bullet-proof.

Why is it important to make a
purgeable resource non-purgeable as soon
as you’ve made sure it is loaded?

Because it is not possible to count on a
purgeable resource after you have made
any calls that could have caused the heap to
be purged, and that means any calls that
allocate memory, directly or indirectly.

This following code is bogus, for in-
stance, because the second resource can
push the first out of memory when it loads.
You can only count on resources in non-
purgeable Handles.

h1 = GetResource('PICT', 1);
BailOSErr( CheckResource(h1) );

h2 = GetResource('PICT', 2);
BailOSErr( CheckResource(h2) );
// by this point we have the second PICT, but that PICT could
// have pushed the first out of memory

Now we have enough tools to write a
version of the function that cannot be made
to misbehave by missing resources, limited
memory or purged Handles. Note that we
do not use ReleaseResource in this case
since we know these resources were origi-
nally marked purgeable, so we’ll get the
memory eventually if we need it.

OSErr DrawTwoPictures(short id1, short id2)
{

Handlepic1 = NULL;
Handlepic2 = NULL;
Rect r = {0,0,100,100};
char pic1State, pic2State;
OSErr result = noErr;



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

BailOSErr( SafeGetResource( &pic1,
&pic1State, 'PICT', id1) );

BailOSErr( SafeGetResource( &pic2,
&pic2State, 'PICT', id2) );

DrawPicture(&r, pic1);
DrawPicture(&r, pic2);

bail:
if (pic1)

HSetState(pic1, pic1State);

if (pic2)
HSetState(pic2, pic2State);

return result;
}

Listing 18. With SafeGetResource, your
purgeable resource code is robust.

Myopic
Some programmers don’t see what

their code does very clearly, so we call them
“myopic” (short-sighted). We had a job
applicant once who proudly showed us his
code, including his own version of strcpy.
He claimed the version in the standard
library didn’t work (which seemed un-
likely). We were immediately suspicious,
so we checked out his version.

void strcpy(char *out, char *in)
{

int x;

for (x = 0 ; x <= strlen(in)  ; x++)
out[x] = in[x];

}
Listing 19. Slow version of strcpy.

We don’t think the programmer meant
to measure the length of the source string
again, every single time around the loop. Of
course, fixing that bug would not be
enough in itself, since the routine has other
faults too.3

Obfuscators
A related character flaw is the person

who optimises the amount of on-screen

space the code takes up, instead of the
compiled output. We would call these
Obfuscators.

This routine is supposed to make all
the characters in a string lower case.

voidLowText(char *a)
{

char*b=a;
while(*a) *b++ =

(islower(*a))? *a++:*a++ + ('a'-'A');
*b = 0;

}
Listing 20. Obfuscator at work.

We're not sure why writing code like
this is popular, but it certainly isn't clear.
Let's reformat it to be less secretive and
obfuscated:

static const char kLowerCaseOffset =
'a'-'A';

voidLowText(char* inStr)
{

char* outStr = inStr;

while(*inStr != 0)
{
if (islower(*inStr))

*outStr++ = *inStr++;
else

*outStr++ = *inStr++ +
kLowerCaseOffset;

}

*outStr = 0;
}
Listing 21. Less Obfuscated, so it’s easier to see

the bug.

Now we can see what it's doing, it is a
lot more obvious that it will not cope with
any input text that isn't letters - for example
it will turn '0' to '9' into 'P' to 'Y'.

It's also Prejudiced - it assumes the text
is in English, and the ASCII character set, so
the Japanese version isn’t going to work
very well. It also scorns the rather nice
Toolbox routines that deal with text, which
could be called Arrogant. To be Tolerant,
you could rewrite it like this:

3 Other faults - it returns void instead of a pointer to the
destination string, only copies strings up to a certain
length, and is not very fast. A valid strcpy can be written
very compactly in C though, if you try.



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

OSErr LowText(char *inStr)
{

if (inStr == nil)
{
DebugText(

"nil string passed to LowText");
return paramErr;
}

LowercaseText(inStr, strlen(inStr),
smSystemScript);

return noErr;
}
Listing 22. In this case it’s best to let the OS do

it anyway.

Another way of being Secretive and
Obfuscatory is to use C++ overloading in
conjunction with inheritance between lots
of classes so that the only way of telling
which function is being called is with a
source-level debugger. We’d give example
code here, but it would take about six
source files to demonstrate properly...

Paranoid
Paranoid programmers worry about

things that can’t possibly go wrong. They
end up creating lots of extra work for them-
selves, because they are always looking in
the wrong place for trouble.

Take a simple function like this:

Boolean RectIsOnMainScreen(Rect r)
{

Rect resultRect;
GDHandlegd = GetMainDevice();

return SectRect(&r,
&gd [0]-> gdRect, &resultRect);

}
Listing 23. Simple function.

A Paranoid programmer would write it
like this:
Boolean RectIsOnMainScreen(Rect r)
{

Rect resultRect;
GDHandlegd = GetMainDevice();
Boolean doesIntersect;
char hState;

hState = HGetState( (Handle) gd );
HLock((Handle)gd); // totally time

// consuming and bogus
doesIntersect = SectRect(&r,

&gd [0]-> gdRect, &resultRect);
HSetState((Handle)gd, hState);
return doesIntersect;

}
Listing 24. Paranoid version.

All the above code that messes around
with the locked state of the Handle is com-
pletely un-needed. SectRect does not move
memory. We have even seen a more patho-
logical variant of this – where a
programmer calls HLockHi for no good
reason, causing heap compactions all over
the place. Even if SectRect was a function
that moved memory, using a temporary
Rect variable would be a better solution.

But the consequences of Paranoia can
be much darker, especially when combined
with Prejudice. The Mercutio bug that
caused panic some months ago was caused
by some code similar to this:

Boolean RectIsOnMainScreen(Rect r)
{

Rect resultRect;
GDHandlegd = GetMainDevice();
Boolean doesIntersect;

HLock((Handle)gd);
doesIntersect = SectRect(&r,

&gd [0]-> gdRect, &resultRect);
HUnlock((Handle)gd, hState);
return doesIntersect;

}
Listing 25. Paranoia + Prejudice = Trouble.

The above code doesn’t bother to save
and restore the state of the GDHandle, and
always leaves it unlocked. Since
GDHandles should ALWAYS be locked
(unless pain is something that you enjoy),
this is a Bad Thing.

Writing a version of SectRect that does
move memory is left as an exercise for the
reader.



PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Conclusion

We’re optimistic about cynicism.
Cynicism works well as a program-

ming personality because it leads you to
expect the worst, so you are forced to write
code that can cope with that situation.

And the truth is that failure is far more
likely than a lot of programmers seem to
think, given that it can be caused by actions
including :

• Allocating even one byte of storage,
• Reading from the disc.
• Writing to the disc.
• Using a purgeable block of memory.
• Using a parameter that may be invalid.
• Calling another function that does one

of the above.
It has been pointed out before that one

good thing about being a Cynic, is that you
are so rarely disappointed.

Bibliography
Further reading: TN 1118, TN 1120,
“Code Complete” by Steve McConnell,

Microsoft Press,
“Writing Solid Code” by Steve Maguire,

Microsoft Press

About the authors
Kevin Marks works for Apple Compu-

ter in the QuickTime Group.
Maf Vosburgh is a freelance engineer,

last seen interviewing in the Bay Area.
By an amazing coincidence, both are

British, both like sushi, and both used to
work at the same company in London,
where they both wrote “3D Atlas” (well,
half each).


